Generation of radially and azimuthally polarized beams with elliptical anisotropic twisted optical fibres
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The main interest of researches to cylindrical vector beams (СVB) is connected with the wide spectrum of their practical applications: laser cutting [3], optical trapping [2] charged particle acceleration [5], resolution enhanced microscopy [4]. Quite natural that a great deal of efforts have been paid for developing the various methods of generating of СVB. The main drawbacks of the above mentioned approaches are connected with the low power efficiency, stability and requirement of complex optical components. In this work we suggest a novel highly effective method of generating radially and azimuthally polarized beams, which is based on the resonance coupling of the higher order modes of anisotropic twisted fibres.
As a model we consider a twisted anisotropic optical fibre consisting of the core with the radius 
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 and an infinite cladding which is described by the following refractive index:
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Where 
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 being the refractive index of an ideal fibre, Δ is the height of the refractive index profile, δ<<1 is the ellipticity parameter, f(r) is the profile function, 
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 is the anisotropy parameter, 
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, q=2π/H (H being the pitch of twist). The second term in (1) describes by the mechanical stress and 
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 and 
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 are the photoelastic constants. Cylindrical polar coordinates (r,φ,z) are implied and the axis z is the fibre’s axis. Note that tensor (1) acts in Cartesian basis: 
[image: image10.wmf])

,

,

(

z

y

x

E

E

E

col

E

=

r

, where 
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 is the electric field. 

To get the modes of the twisted fibre we apply the perturbation theory approach to the vector wave equation for nonmagnetic anisotropic media [1]. The analysis of the spectrum of the propagation constants for the zero-order modes reveals the presence of two resonance points, in which the degeneracy of the propagation constants takes place: at the pitch 
[image: image12.wmf]1

H

, where the states  
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 have the same propagation constants, and 
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, where the states 
[image: image16.wmf]1

,

1

-

-

 and 
[image: image17.wmf]n

TE

,

0

 intersect. Exactly in the vicinity of these points the influence of small ellipticity and anisotropy could drastically affect the mode structure and result in strong hybridization of the corresponding zero-order modes.
For example, near the point 
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 we have the following hybrid mode:
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where the parameter 
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 depends on the relation between the constants of anisotropy, ellipticity and the deviation of the pitch twist from its resonance value 
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, 
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 stands for the right circularly polarized optical vortex with the unity topological charge and 
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 is the standard transverse magnetic mode.
Now let us demonstrate how elliptical anisotropic twisted fibres could in principle be used for all-fibre generation of radially and azimuthally polarized optical beams. To this end we consider the excitation of the fibre with the twist pitch near, say, the point 
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 by a circularly polarized OV with a unity topological charge. At the optimal distances 
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, where m=0,1,2…, the field propagating through the fibre have the form:
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where 
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 is proportional to the constants of anisotropy, 
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 is the scalar propagation constant) and 
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, i.e. when the resonance condition is obeyed:
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The last expression presents one of the main results of this study and brings us to the conclusion that at certain conditions an incident OV gets completely converted into the radially polarized beam.
In conclusion, it is shown that the modes of twisted anisotropic fibres are represented by a superposition of circularly polarized optical vortices with the unity topological charge with radially or azimuthally polarized optical mode. We have predicted that the twisted fibres can be used as an efficient and stable all-fibre generator of radially and azimuthally polarized vector beams. 
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